Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1927: 215-230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788795

RESUMO

13C-assisted metabolism analysis provides rigorous calculations of the intracellular reaction rates (i.e., fluxes) within the central metabolism of microbial hosts. This mapping of the intracellular network within microbes has proven to be essential for understanding the cell physiology. The approach is also a key to identifying central metabolic nodes, probing the rigidity of a metabolic network, revealing cofactor balances, and delineating hidden pathways. Here we present the methodology of using stable isotopic carbon substrates for both qualitative (13C-fingerprinting of functional pathways) and quantitative (Metabolic Flux Analysis) metabolism studies on bacterial species. In this methodology, we include step-by-step instructions to use the open source WUflux software for the steady-state flux calculations based on labeling information of amino acids or free metabolites.


Assuntos
Bactérias/metabolismo , Isótopos de Carbono , Metabolismo Energético , Análise do Fluxo Metabólico , Metabolômica , Aminoácidos/metabolismo , Isótopos de Carbono/metabolismo , Biologia Computacional/métodos , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Software , Interface Usuário-Computador , Fluxo de Trabalho
2.
Biotechnol Biofuels ; 10: 273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29177008

RESUMO

BACKGROUND: Synechococcus elongatus UTEX 2973 is the fastest growing cyanobacterium characterized to date. Its genome was found to be 99.8% identical to S. elongatus 7942 yet it grows twice as fast. Current genome-to-phenome mapping is still poorly performed for non-model organisms. Even for species with identical genomes, cell phenotypes can be strikingly different. To understand Synechococcus 2973's fast-growth phenotype and its metabolic features advantageous to photo-biorefineries, 13C isotopically nonstationary metabolic flux analysis (INST-MFA), biomass compositional analysis, gene knockouts, and metabolite profiling were performed on both strains under various growth conditions. RESULTS: The Synechococcus 2973 flux maps show substantial carbon flow through the Calvin cycle, glycolysis, photorespiration and pyruvate kinase, but minimal flux through the malic enzyme and oxidative pentose phosphate pathways under high light/CO2 conditions. During fast growth, its pool sizes of key metabolites in central pathways were lower than suboptimal growth. Synechococcus 2973 demonstrated similar flux ratios to Synechococcus 7942 (under fast growth conditions), but exhibited greater carbon assimilation, higher NADPH concentrations, higher energy charge (relative ATP ratio over ADP and AMP), less accumulation of glycogen, and potentially metabolite channeling. Furthermore, Synechococcus 2973 has very limited flux through the TCA pathway with small pool sizes of acetyl-CoA/TCA intermediates under all growth conditions. CONCLUSIONS: This study employed flux analysis to investigate phenotypic heterogeneity among two cyanobacterial strains with near-identical genome background. The flux/metabolite profiling, biomass composition analysis, and genetic modification results elucidate a highly effective metabolic topology for CO2 assimilatory and biosynthesis in Synechococcus 2973. Comparisons across multiple Synechococcus strains indicate faster metabolism is also driven by proportional increases in both photosynthesis and key central pathway fluxes. Moreover, the flux distribution in Synechococcus 2973 supports the use of its strong sugar phosphate pathways for optimal bio-productions. The integrated methodologies in this study can be applied for characterizing non-model microbial metabolism.

3.
Biotechnol Bioeng ; 114(7): 1593-1602, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28295163

RESUMO

Synechocystis sp. strain PCC 6803 has been widely used as a photo-biorefinery chassis. Based on its genome annotation, this species contains a complete TCA cycle, an Embden-Meyerhof-Parnas pathway (EMPP), an oxidative pentose phosphate pathway (OPPP), and an Entner-Doudoroff pathway (EDP). To evaluate how Synechocystis 6803 catabolizes glucose under heterotrophic conditions, we performed 13 C metabolic flux analysis, metabolite pool size analysis, gene knockouts, and heterologous expressions. The results revealed a cyclic mode of flux through the OPPP. Small, but non-zero, fluxes were observed through the TCA cycle and the malic shunt. Independent knockouts of 6-phosphogluconate dehydrogenase (gnd) and malic enzyme (me) corroborated these results, as neither mutant could grow under dark heterotrophic conditions. Our data also indicate that Synechocystis 6803 metabolism relies upon oxidative phosphorylation to generate ATP from NADPH under dark or insufficient light conditions. The pool sizes of intermediates in the TCA cycle, particularly acetyl-CoA, were found to be several fold lower in Synechocystis 6803 (compared to E. coli metabolite pool sizes), while its sugar phosphate intermediates were several-fold higher. Moreover, negligible flux was detected through the native, or heterologous, EDP in the wild type or Δgnd strains under heterotrophic conditions. Comparing photoautotrophic, photomixotrophic, and heterotrophic conditions, the Calvin cycle, OPPP, and EMPP in Synechocystis 6803 possess the ability to regulate their fluxes under various growth conditions (plastic), whereas its TCA cycle always maintains at low levels (rigid). This work also demonstrates how genetic profiles do not always reflect actual metabolic flux through native or heterologous pathways. Biotechnol. Bioeng. 2017;114: 1593-1602. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Plasticidade Celular/fisiologia , Análise do Fluxo Metabólico/métodos , Metaboloma/fisiologia , Oxigênio/metabolismo , Synechocystis/fisiologia , Consumo de Oxigênio/fisiologia , Proteoma/metabolismo
4.
Biotechnol Biofuels ; 10: 22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28149324

RESUMO

BACKGROUND: C1 substrates (such as formate and methanol) are promising feedstock for biochemical/biofuel production. Numerous studies have been focusing on engineering heterologous pathways to incorporate C1 substrates into biomass, while the engineered microbial hosts often demonstrate inferior fermentation performance due to substrate toxicity, metabolic burdens from engineered pathways, and poor enzyme activities. Alternatively, exploring native C1 pathways in non-model microbes could be a better solution to address these challenges. RESULTS: An oleaginous fungus, Umbelopsis isabellina, demonstrates an excellent capability of metabolizing formate to promote growth and lipid accumulation. By co-feeding formate with glucose at a mole ratio of 3.9:1, biomass and lipid productivities of the culture in 7.5 L bioreactors were improved by 20 and 70%, respectively. 13C-metabolite analysis, genome annotations, and enzyme assay further discovered that formate not only provides an auxiliary energy source [promoting NAD(P)H and ATP] for cell anabolism, but also contributes carbon backbones via folate-mediated C1 pathways. More interestingly, formate addition can tune fatty acid profile and increase the portion of medium-chain fatty acids, which would benefit conversion of fungal lipids for high-quality biofuel production. Flux balance analysis further indicates that formate co-utilization can power microbial metabolism to improve biosynthesis, particularly on glucose-limited cultures. CONCLUSION: This study demonstrates Umbelopsis isabellina's strong capability for co-utilizing formate to produce biomass and enhance fatty acid production. It is a promising non-model platform that can be potentially integrated with photochemical/electrochemical processes to efficiently convert carbon dioxide into biofuels and value-added chemicals.

5.
Biotechnol Biofuels ; 9: 212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27766116

RESUMO

BACKGROUND: Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPPP). However, Escherichia coli do not use their native EDP for glucose metabolism. RESULTS: Overexpression of edd and eda in E. coli to enhance EDP activity resulted in only a small shift in the flux directed through the EDP (~20 % of glycolysis flux). Disrupting the EMPP by phosphofructokinase I (pfkA) knockout increased flux through OPPP (~60 % of glycolysis flux) and the native EDP (~14 % of glycolysis flux), while overexpressing edd and eda in this ΔpfkA mutant directed ~70 % of glycolytic flux through the EDP. The downregulation of EMPP via the pfkA deletion significantly decreased the growth rate, while EDP overexpression in the ΔpfkA mutant failed to improve its growth rates due to metabolic burden. However, the reorganization of E. coli glycolytic strategies did reduce glucose catabolite repression. The ΔpfkA mutant in glucose medium was able to cometabolize acetate via the citric acid cycle and gluconeogenesis, while EDP overexpression in the ΔpfkA mutant repressed acetate flux toward gluconeogenesis. Moreover, 13C-pulse experiments in the ΔpfkA mutants showed unsequential labeling dynamics in glycolysis intermediates, possibly suggesting metabolite channeling (metabolites in glycolysis are pass from enzyme to enzyme without fully equilibrating within the cytosol medium). CONCLUSIONS: We engineered E. coli to redistribute its native glycolytic flux. The replacement of EMPP by EDP did not improve E. coli glucose utilization or biomass growth, but alleviated catabolite repression. More importantly, our results supported the hypothesis of channeling in the glycolytic pathways, a potentially overlooked mechanism for regulating glucose catabolism and coutilization of other substrates. The presence of channeling in native pathways, if proven true, would affect synthetic biology applications and metabolic modeling.

6.
Biotechnol Bioeng ; 113(1): 91-100, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26174624

RESUMO

For rapid analysis of microbial metabolisms, (13)C-fingerprinting employs a set of tracers to generate unique labeling patterns in key amino acids that can highlight active pathways. In contrast to rigorous (13)C-metabolic flux analysis ((13)C-MFA), this method aims to provide metabolic insights without expensive flux measurements. Using (13)C-fingerprinting, we investigated the metabolic pathways in Rhodococcus opacus PD630, a promising biocatalyst for the conversion of lignocellulosic feedstocks into value-added chemicals. Specifically, seven metabolic insights were gathered as follows: (1) glucose metabolism mainly via the Entner-Doudoroff (ED) pathway; (2) lack of glucose catabolite repression during phenol co-utilization; (3) simultaneous operation of gluconeogenesis and the ED pathway for the co-metabolism of glucose and phenol; (4) an active glyoxylate shunt in acetate-fed culture; (5) high flux through anaplerotic pathways (e.g., malic enzyme and phosphoenolpyruvate carboxylase); (6) presence of alternative glycine synthesis pathway via glycine dehydrogenase; and (7) utilization of preferred exogenous amino acids (e.g., phenylalanine). Additionally, a (13)C-fingerprinting kit was developed for studying the central metabolism of non-model microbial species. This low-cost kit can be used to characterize microbial metabolisms and facilitate the design-build-test-learn cycle during the development of microbial cell factories.


Assuntos
Isótopos de Carbono/análise , Redes e Vias Metabólicas , Metabolômica/métodos , Rhodococcus/metabolismo , Coloração e Rotulagem/métodos , Fatores de Tempo
7.
Bioresour Technol ; 183: 18-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25710679

RESUMO

Oleaginous fungus Mortierella isabellina showed excellent lipid conversion on non-detoxified lignocellulosic hydrolysate. This study investigated the effects of inhibitory compounds (furfural, hydroxymethylfurfural, and ferulic and coumaric acids) in lignocellulosic hydrolysate on M. isabellina growth and lipid production. M. isabellina can tolerate furfural (∼1 g/L), hydroxymethylfurfural (∼2.5 g/L), ferulic (∼0.5 g/L) and coumaric acid (∼0.5 g/L) with normal growth rates. Synergistic effect of these inhibitors (2 g/L furfural, 0.4 g/L hydroxymethylfurfural, 0.02 g/L ferulic acid and 0.02 g/L coumaric acid) moderately reduces total fungal growth (by 28%), while the presence of these inhibitors has minor impact on cell lipid contents and lipid profiles. In the presence of inhibitory compounds, (13)C-tracing has revealed that M. isabellina can simultaneously utilize glucose and acetate, and acetate is mainly assimilated for synthesis of lipid and TCA cycle amino acids. The results also demonstrate that glucose has strong catabolite repression for xylose utilization for biomass and lipid production in the presence of inhibitors.


Assuntos
Carbono/metabolismo , Lignina/farmacologia , Mortierella/crescimento & desenvolvimento , Mortierella/metabolismo , Aminoácidos/metabolismo , Carbono/farmacologia , Isótopos de Carbono , Ácidos Cumáricos/farmacologia , Ácidos Graxos/análise , Fermentação/efeitos dos fármacos , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Hidrólise , Marcação por Isótopo , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Mortierella/citologia , Mortierella/efeitos dos fármacos
8.
Bioresour Technol ; 169: 462-467, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25084044

RESUMO

Anaerobic digestion (AD) is an environmentally friendly approach to waste treatment, which can generate N and P-rich effluents that can be used as nutrient sources for microalgal cultivations. Modifications of AD processes to inhibit methanogenesis leads to the accumulation of acetic acid, a carbon source that can promote microalgal biosynthesis. This study tested different AD effluents from municipal wastes on their effect on D-lactate production by an engineered Synechocystis sp. PCC 6803 (carrying a novel lactate dehydrogenase). The results indicate that: (1) AD effluents can be supplemented into the modified BG-11 culture medium (up to 1:4 volume ratio) to reduce N and P cost; (2) acetate-rich AD effluents enhance D-lactate synthesis by ∼ 40% (1.2g/L of D-lactate in 20 days); and (3) neutral or acidic medium had a deleterious effect on lactate secretion and biomass growth by the engineered strain. This study demonstrates the advantages and guidelines in employing wastewater for photomixotrophic biosynthesis using engineered microalgae.


Assuntos
Ácido Láctico/biossíntese , Engenharia Metabólica/métodos , Eliminação de Resíduos , Esterilização , Synechocystis/metabolismo , Eliminação de Resíduos Líquidos , Acetatos/farmacologia , Anaerobiose/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Esgotos/microbiologia , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento , Águas Residuárias/microbiologia
9.
Front Microbiol ; 5: 344, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071754

RESUMO

Metabolic engineering has developed microbial cell factories that can convert renewable carbon sources into biofuels. Current molecular biology tools can efficiently alter enzyme levels to redirect carbon fluxes toward biofuel production, but low product yield and titer in large bioreactors prevent the fulfillment of cheap biofuels. There are three major roadblocks preventing economical biofuel production. First, carbon fluxes from the substrate dissipate into a complex metabolic network. Besides the desired product, microbial hosts direct carbon flux to synthesize biomass, overflow metabolites, and heterologous enzymes. Second, microbial hosts need to oxidize a large portion of the substrate to generate both ATP and NAD(P)H to power biofuel synthesis. High cell maintenance, triggered by the metabolic burdens from genetic modifications, can significantly affect the ATP supply. Thereby, fermentation of advanced biofuels (such as biodiesel and hydrocarbons) often requires aerobic respiration to resolve the ATP shortage. Third, mass transfer limitations in large bioreactors create heterogeneous growth conditions and micro-environmental fluctuations (such as suboptimal O2 level and pH) that induce metabolic stresses and genetic instability. To overcome these limitations, fermentation engineering should merge with systems metabolic engineering. Modern fermentation engineers need to adopt new metabolic flux analysis tools that integrate kinetics, hydrodynamics, and (13)C-proteomics, to reveal the dynamic physiologies of the microbial host under large bioreactor conditions. Based on metabolic analyses, fermentation engineers may employ rational pathway modifications, synthetic biology circuits, and bioreactor control algorithms to optimize large-scale biofuel production.

10.
Microb Cell Fact ; 13(1): 42, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24642094

RESUMO

This paper discusses the use of 13C-based metabolism analysis for the assessment of intrinsic product yields - the actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route - in the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute significantly to product synthesis, which can be quantified through an isotopic dilution method. Second, product and biomass synthesis may be dependent on the co-metabolism of multiple-carbon sources. 13C labeling experiments can track the fate of each carbon substrate in the cell metabolism and identify which substrate plays a main role in product synthesis. Third, 13C labeling can validate and quantify the contribution of the engineered pathway (versus the native pathway) to the product synthesis. Fourth, the loss of catabolic energy due to cell maintenance (energy used for functions other than production of new cell components) and low P/O ratio (Phosphate/Oxygen Ratio) significantly reduces product yields. Therefore, 13C-metabolic flux analysis is needed to assess the influence of suboptimal energy metabolism on microbial productivity, and determine how ATP/NAD(P)H are partitioned among various cellular functions. Since product yield is a major determining factor in the commercialization of a microbial cell factory, we foresee that 13C-isotopic labeling experiments, even without performing extensive flux calculations, can play a valuable role in the development and verification of microbial cell factories.


Assuntos
Carbono/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Metabolismo Energético , Análise do Fluxo Metabólico , NAD/metabolismo
11.
Mar Drugs ; 11(8): 2894-916, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23945601

RESUMO

Cyanobacteria (blue-green algae) play profound roles in ecology and biogeochemistry. One model cyanobacterial species is the unicellular cyanobacterium Synechocystis sp. PCC 6803. This species is highly amenable to genetic modification. Its genome has been sequenced and many systems biology and molecular biology tools are available to study this bacterium. Recently, researchers have put significant efforts into understanding and engineering this bacterium to produce chemicals and biofuels from sunlight and CO2. To demonstrate our perspective on the application of this cyanobacterium as a photosynthesis-based chassis, we summarize the recent research on Synechocystis 6803 by focusing on five topics: rate-limiting factors for cell cultivation; molecular tools for genetic modifications; high-throughput system biology for genome wide analysis; metabolic modeling for physiological prediction and rational metabolic engineering; and applications in producing diverse chemicals. We also discuss the particular challenges for systems analysis and engineering applications of this microorganism, including precise characterization of versatile cell metabolism, improvement of product rates and titers, bioprocess scale-up, and product recovery. Although much progress has been achieved in the development of Synechocystis 6803 as a phototrophic cell factory, the biotechnology for "Compounds from Synechocystis" is still significantly lagging behind those for heterotrophic microbes (e.g., Escherichia coli).


Assuntos
Fotossíntese/fisiologia , Processos Fototróficos/fisiologia , Synechocystis/metabolismo , Biotecnologia/métodos , Genoma Bacteriano , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , Synechocystis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...